207
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Transplantation of retrovirally transduced bone marrow prevents autoimmune disease in aged mice by peripheral tolerance mechanisms

, , , , , , & show all
Pages 384-393 | Received 26 Jul 2010, Accepted 09 Nov 2010, Published online: 19 Jan 2011
 

Abstract

Transplantation of bone marrow (BM) engineered to express self-antigen has been shown to protect 100% of young mice from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), with thymic clonal deletion as a tolerance mechanism. Here, we asked whether aged mice can also be tolerised following transplantation with self-antigen-engineered BM and whether castration-induced thymus regrowth can enhance this outcomes. Then, 50% of aged mice were protected from EAE regardless of castration-induced thymus regrowth. EAE-free and diseased mice demonstrated MOG-specific lymphocyte proliferation and antibody production regardless of castration-induced thymus regrowth, consistent with lack of intrathymic deletion of self-antigen-reactive T cells. Although low chimerism levels ( < 4%) were observed, EAE-free mice showed significantly higher chimerism levels in lymphocytes in peripheral lymphoid organs compared with thymus. CD4+CD25+ regulatory T cells were elevated in lymph nodes of EAE-free mice. We conclude that transplantation of self-antigen expressing BM protects 50% of aged mice and castration-induced thymic regrowth had no effect on outcomes. Peripheral tolerance mechanisms are implicated since protection is associated with higher chimerism levels in peripheral T and B lymphocytes and with elevated regulatory T cells.

Declaration of interest: This study was supported by a program grant from the National Health and Medical Research Council of Australia. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.