1,508
Views
86
CrossRef citations to date
0
Altmetric
Review Article

Regulation of Aicda expression and AID activity

&
Pages 83-101 | Received 07 Nov 2012, Accepted 09 Nov 2012, Published online: 17 Jan 2013
 

Abstract

Activation-induced cytidine deaminase (AID) is expressed in a B cell differentiation stage-specific fashion and is essential for immunoglobulin (Ig) gene class switch DNA recombination (CSR) and somatic hypermutation (SHM). CSR and SHM play a central role in the maturation of antibody and autoantibody responses. AID displays a mutagenic activity by catalyzing targeted deamination of deoxycytidine (dC) residues in DNA resulting in dU:dG mismatches, which are processed into point-mutations in SHM or double-strand breaks (DSBs) in CSR. Although AID specifically targets the Ig gene loci (IgH, Igκ and Igλ), it can also home into a wide array of non-Ig genes in B-and non-B-cell backgrounds. Aberrant expression of AID is associated with multiple diseases such as allergy, inflammation, autoimmunity and cancer. In autoimmune systemic lupus erythematosus, dysregulated AID expression underpins increased CSR, SHM and autoantibody production. As a potent mutator, AID is under stringent transcriptional, post-transcriptional and post-translational regulation. AID is also regulated in its targeting and enzymatic function. In resting naïve or memory B cells, AID transcripts and protein are undetectable. These, however, are readily and significantly up-regulated in B cells induced to undergo CSR and/or SHM. Transcription factors, such as HoxC4 and NF-κB, which are up-regulated in a B cell lineage-and/or differentiation stage-specific manner, regulate the induction of AID. HoxC4 induces AID expression by directly binding to the AID gene promoter through an evolutionarily conserved 5′-ATTT-3′ motif. HoxC4 is induced by the same stimuli that induce AID and CSR. It is further up-regulated by estrogen through three estrogen responsive elements in its promoter region. The targeting of AID to switch (S) regions is mediated by 14-3-3 adaptor proteins, which specifically bind to 5′-AGCT-3′ repeats that are exist at high frequency in S region cores. Like HoxC4, 14-3-3 adaptors are induced by the same stimuli that induce AID. These include “primary” inducing stimuli, that is, those that play a major role in inducing AID, i.e., engagement of CD40 by CD154, engagement of Toll-like receptors (TLRs) by microbial-associated molecular patterns (MAMPs) and cross-linking of the BCR, as synergized by “secondary” inducing stimuli, that is, those that synergize for AID induction and specify CSR to different isotypes, i.e., switch-directing cytokines IL-4, TGF-β or IFN-γ. In this review, we focus on the multi-levels regulation of AID expression and activity. We also discuss the dysregulation or misexpression of AID in autoimmunity and tumorigenesis.

Acknowledgements

We thank Dr. Egest J. Pone, Mr. Clayton A. White and other members of the Casali lab for helpful discussions. We apologize that owing to space limitations only a fraction of the relevant literature is cited here. Work on AID, antibody/autoantibody responses and autoimmunity in the Casali laboratory has been supported by U.S. National Institutes of Health grants AI 079705, AI 045011 and AI 060573.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.