179
Views
11
CrossRef citations to date
0
Altmetric
Original Article

MRL/MpJ-Faslpr mice show abnormalities in ovarian function and morphology with the progression of autoimmune disease

, , , , &
Pages 402-411 | Received 11 Dec 2014, Accepted 14 Mar 2015, Published online: 10 Apr 2015
 

Abstract

The immune system is known to affect reproductive function, and maternal–fetal immune tolerance is essential for a successful pregnancy. To investigate the relationship between autoimmune disease and female reproductive function, we performed a comparative analysis of the ovarian phenotypes for C57BL/6 mice, autoimmune disease-prone MRL/MpJ (MRL/+) mice and congenic MRL/MpJ-Faslpr (MRL/lpr) mice harboring a mutation in the Fas gene that speeds disease onset. Both MRL-background strains showed earlier vaginal opening than C57BL/6 mice. The estrous cycle became irregular by 6 and 12 months of age in MRL/lpr mice and mice of the other two strains, respectively. Histological analysis at 3 months revealed that the number of primordial follicles was smaller in MRL-background mice than in C57BL/6 mice after 3 months. In addition, MRL/lpr and MRL/+ mice displayed lower numbers of ovarian follicles and corpora lutea at 3 and 6 months, and 6 and 12 months, respectively, than that in age-matched C57BL/6 mice. MRL/lpr and MRL/+ mice developed ovarian interstitial glands after 3 and 6 months, respectively. In particular, MRL/lpr mice showed numerous infiltrating lymphocytes within the ovarian interstitia, and partially stratified ovarian surface epithelia with more developed microvilli than that observed in C57BL/6 mice at 6 months. No significant differences in serum hormone levels were observed between the strains. In conclusion, MRL/lpr mice display altered ovarian development, morphology and function consistent with the progression of severe autoimmune disease, as these findings are less severe in MRL/+ counterparts.

Declaration of interest

The authors declare that they have no competing interests. This work was partially supported by a Grant-in-Aid for Scientific Research (B) (No. 24380156).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.