30
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Effects of HgCl2 on the Expression of Autoimmune Responses and Disease in Diabetes-Prone (DP) BB Rats

, &
Pages 173-187 | Received 29 Oct 1996, Accepted 17 Jan 1997, Published online: 07 Jul 2009
 

Abstract

Repeated exposure of Brown Norway (BN) rats to relatively low doses of HgCh induces autoantibodies to renal antigens (e.g., laminin) and a membranous glomerulonephropa-thy characterized by proteinuria. In contrast, Lewis (LEW) rats are “resistant” to the autoimmune effects of mercury and, when exposed to this metal, are protected against experimental autoimmune encephalomyelitis (EAE) and Heymann's nephritis. To date, there is no information on “suppressive” effects of mercury in naturally occurring (so-called “spontaneous”) rat models of autoimmune disease. Therefore, we have administered HgCl2 to diabetes-prone (DP) BB rats, animals that spontaneously develop both insulin-dependent diabetes mellitus (IDDM) and thyroiditis. We found that DP rats treated with mercury or water for a period of 40–125 days developed autoantibodies to thyroglobulin, with a higher incidence in HgCl2-injected animals (92% vs. 56% in H20-injected controls). A novel finding of our study was the detection of autoantibodies to laminin in the same rats, again with an increased incidence after HgCl2 treatment (83% vs. 44%). IgG2a was the most frequently detected isotype of antibodies to laminin, followed by IgGl, IgG2b and IgG2c. The IgG isotype profile suggests that treatment with HgCl2 may activate both Thl and Th2 lymphocytes in BB rats. In spite of these stimulatory effects on autoantibody responses, we found that there was no difference in the incidence of IDDM and thyroiditis between HgCl2-treated and control animals.

We conclude that the suppressive effects of mercury previously observed in EAE and Heymann's nephritis of LEW rats do not occur in “spontaneous” autoimmune IDDM and thyroiditis of BB rats. Therefore, immune suppression caused by HgCl2 cannot be considered a common phenomenon, but may be a genetically determined characteristic of LEW rats, possibly related to a specific or unique cytokine profile of this particular rat strain. In contrast, while mercury does not seem to recruit, induce or rescue regulatory T cell function in DP rats, it does stimulate autoantibody responses in these animals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.