181
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Mitoxantrone exerts both cytotoxic and immunoregulatory effects on activated microglial cells

, , , , &
Pages 36-41 | Received 06 Jan 2011, Accepted 15 Mar 2011, Published online: 26 Apr 2011
 

Abstract

Mitoxantrone (MX) is the most common immunosuppressive drug used in patients with rapidly worsening multiple sclerosis (MS), whose disease is not controlled by β-interferon or glatiramer acetate. Although MX suppresses antigen-presenting cell (APC) and T-cell function in the periphery, its mechanism of action in the central nervous system (CNS) is not known. Given that MX can cross the disrupted blood–brain barrier, such as in MS patients, we in the present study have tested our hypothesis that MX in the CNS exerts cytotoxic and immunomodulatory effects on microglia, the major CNS-resident APCs that play a crucial role in MS pathogenesis. The cytotoxic effect of MX on microglial cells was determined by MTT and flow cytometry test, whereas the regulatory function was tested with enzyme-linked immunosorbent assay (ELISA) method. Indeed, we have found that MX induced microglial cell death in a dose-dependent manner, and the cell death was mainly from late apoptosis and necrosis. Further, MX induced significantly increased levels of interleukin (IL)-10 production of microglia, whereas IL-23p19 production/expression was significantly suppressed. Thus, our study for the first time demonstrates the immunosuppressive/regulatory effect of MX on microglia, which represents an important mechanism underlying the therapeutic effect of this drug on MS patients.

Acknowledgements

This study was supported by the Chinese National Natural Science Fund and MS research grants from the Health Department of Guangxi Province. We thank Zhihui Liang for technical assistance and Katherine Regan for editorial assistance.

Declaration of interest

The authors report no declarations of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.