14
Views
15
CrossRef citations to date
0
Altmetric
Original Article

A Novel Microporous Polyurethane Vascular Graft: In Vivo Evaluation of the UTA Prosthesis Implanted as Infra-Renal Aortic Substitute in Dogs

, , , , , , , & show all
Pages 273-288 | Published online: 09 Jul 2009
 

Abstract

A novel microporous polyurethane blood conduit developed at the University of Texas at Arlington was implanted as an infra-renal substitute in dogs. The prosthesis was fabricated by precipitating a solution of the polymer with dry nitrogen onto a rotating mandrel. The grafts were sterilized either by gamma radiation (series I) or ethylene oxide (series II); they were implanted for the following prescheduled periods: 4, 24, 48 hours, and J week (short-term) and 2, 4 weeks, 3 and 6 months (medium-term). The thrombohematological characteristics of each animal were evaluated prior to implantation and confirmed that the index of blood coagulability was normal. In the short-term group, five out of eight grafts were patent and three were partially occluded; four grafts in the medium-term group were patent; one was partially occluded; and three were thrombosed at retrieval. One week after implantation, the prostheses were surrounded by an external capsule, which was present mainly at the two anastomoses. The external capsule covered the entire graft at 3 months. No kinking of the grafts was observed and the presence of a mild yellow stain related to bilirubin uptake was detected at 2 weeks, 1, 3, and 6 months. Histological studies have revealed the formation of a thin internal capsule at both anastomoses, 2 weeks postimplantation, which was not anchored to the graft wall. In the medium-term group, the thrombosed grafts failed to develop an internal capsule, whereas the patent graft exhibited a thick internal capsule made of neocollagenous tissue over the entire graft. This new microporous polyurethane prosthesis did not perform satisfactorily as an infra-renal substitute in dogs and its in vivo stability requires further assessment. Thus, the concept of a polyurethane with closed pores does not achieve what was anticipated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.