Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 25, 2013 - Issue 11
132
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Age influence on hypersensitivity pneumonitis induced in mice by exposure to Pantoea agglomerans

, , , , , , , , , , , , , , , , , , , , & show all
Pages 640-650 | Received 09 May 2013, Accepted 17 Jul 2013, Published online: 17 Sep 2013
 

Abstract

Hypersensitivity pneumonitis (HP) represents the immunologically mediated lung disease induced by repeated inhalations of a wide variety of certain finely dispersed organic antigens. In susceptible subjects, these inhalations provoke a hypersensitivity reaction characterized by intense inflammation of the terminal bronchioles, the interstitium and the alveolar tree. The inflammation often organizes into granulomas and may progress to pulmonary fibrosis. Our previous work indicated that cell extract of gram-negative bacteria Pantoea agglomerans (SE-PA) causes, in young C57BL/6J mice, pulmonary changes that are very similar to the clinical manifestations of HP in men. The purpose of presented studies was to describe the response of mice immune system while exposed to SE-PA. Particular attention was paid to examine the age influence on SE-PA induced inflammation and fibrosis in lung tissue. We used 3- and 18-month-old C57BL/6J mice. Lung samples were collected from untreated mice and animals exposed to harmful agent for 7 and 28 days. HP development was monitored by histological and biochemical evaluation. Using ELISA tests, we examined concentration of pro- and anti-inflammatory cytokines in lung homogenates. Our study demonstrated again that SE-PA provokes in mice changes typical for the clinical picture of HP, and that successive stages of disease (acute, subacute and chronic) might be obtained by modulation of time exposure. Furthermore, we found that animals' age at the time of sensitization influences the nature of observed changes (cytokine expression pattern) and the final outcome (reaction intensity and scale of fibrosis).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.