612
Views
42
CrossRef citations to date
0
Altmetric
Research Papers

Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells

, , , , , , & show all
Pages 139-149 | Received 17 Jun 2014, Accepted 14 Jul 2014, Published online: 12 Aug 2014
 

Abstract

Herein we combine chemical and mechanical stimulation to investigate the effects of vascular endothelial growth factor (VEGF) and physiological shear stress in promoting the differentiation human adipose derived stem cells (ADSCs) into endothelial cells. ADSCs were isolated and characterized; endothelial differentiation was promoted by culturing confluent cells in 50 ng/ml VEGF under physiological shear stress for up to 14 days. Afterwards, endothelial cells were seeded onto collagen or acellular aortic valve matrices and exposed to four culture conditions: shear stress + VEGF; shear stress − VEGF; static + VEGF and static − VEGF. After 7 days, phenotype was investigated. ADSCs subjected to shear stress and VEGF express a comprehensive range of specific endothelial markers (vWF, eNOS and FLT-1 after 7 days and CD31, FLk-1 and VE-cadherin after 14 days) and maintain the phenotype when seeded onto scaffolds. Our protocol proved to be an efficient source of endothelial-like cells for tissue engineering based on autologous ADSC.

Acknowledgements

Authors thank Dr Basim A. Matti M.D. (Harley Street Clinic, London) for providing adipose tissue samples and Dr. UlianoGuerrini (University of Milan) for the critical reading of the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.