35
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Solid Supported Vesicles for Bactericide Delivery

, &
Pages 303-320 | Published online: 28 Sep 2008
 

Abstract

Cationic and anionic liposomes have been prepared by extrusion from dipalmitoylphosphatidylcholine (DPPC) and its mixtures with cholesterol and dimethyldioctadecyltrimethylammonium bromide (DDAB) and with phosphatidylinositol (PI) respectively covering a range of composition from 0 to 19 mole % DDAB and PI. The adsorption of liposomal lipid from the liposome dispersion onto particles of silica and titanium dioxide in suspension has been studied as a function of liposome composition and concentration. The adsorption isotherms have been fitted using a Langmuir equation from which the binding constants and maximum surface coverage were obtained. The Gibbs energies of adsorption for the cationic liposomes were on average -61.0 ± 2.1 kJ mol−1 (on silica) and -50.6 ± 2.9 kJ mol−1 (on titanium dioxide). On average saturation adsorption is equivalent to 3 to 10 lipid monolayers on silica and 3 to 7 on titanium dioxide. Using liposomes encapsulating D-glucose it is demonstrated that there is almost no release of glucose on adsorption of the lipid, indicating that the liposomes are adsorbed intact to form a liposome monolayer on the particle surfaces. Adsorption of intact liposomes to form a close-packed liposome monolayer of solid supported vesicles (SSV) is shown to be equivalent to on average 7.0 ± 0.2 phospholipid monolayers. The SSVs are shown to have increased stability to disruption by surfactants and when carrying the oil-soluble bactericide, Triclosan™, to be capable of inhibiting the growth of oral bacteria from immobilised biofilms.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.