180
Views
6
CrossRef citations to date
0
Altmetric
Research Article

The effect of aminoglycoside antibiotics on the thermodynamic properties of liposomal vesicles

, , , &
Pages 84-96 | Received 01 May 2009, Accepted 09 Jun 2009, Published online: 11 Feb 2010
 

Abstract

Liposomes are ideal drug-delivery systems because they can alter the pharmacokinetic characteristics and biodistribution profile of the incorporated bioactive molecule. The effect of the aminoglycoside antibiotics, gentamicin (GN), tobramycin (TOB), and amikacin (AMI), on the thermodynamic properties of multilamellar vesicles composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied by using differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), and 31P nuclear magnetic resonance (NMR) spectroscopy. The relationship between the structure of aminoglycoside antibiotics and their effect on the physical properties of the liposomal bilayers was investigated. The incorporation of the drugs was achieved and an osmotic gradient created by controlling the mole ratio of the drug inside to that outside of the DPPC vesicles so that [druginside DPPC]/[drugoutside DPPC] was 1:0, 1:0.2, 1:1, or 1:2.5. Incorporation of the drugs into liposomes caused the Tm to shift to a higher temperature and the δHm and δT1/2 values to decrease. The 2Amax and the order parameter (S), obtained from the EPR spectra, indicated that the fluidity of the liposomal membrane was affected by the type of drug and by the concentration used; GN and TOB decreased the fluidity and disturbed chain packing at mole ratios of [druginside DPPC]/[drugoutside DPPC] ranging from 1:0 to 1:0.2, while AMI increased the fluidity and disrupted chain packing at an osmotic gradient of 1:2.5. In conclusion, the molecular organization and thermotropic properties of the multilamellar DPPC vesicles were dependent on the osmotic gradient and structure of the aminoglycoside.

Acknowledgments

Declaration of interests: The authors report no financial conflicts of interest. The authors alone are responsible for the content and writing of this paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.