131
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain

, , &
Pages 245-254 | Received 16 Sep 2010, Accepted 08 Nov 2010, Published online: 21 Dec 2010
 

Abstract

The preferential in vitro adsorption of apolipoprotein E (Apo E) onto the surface of colloidal drug carriers may be used as a strategy to evaluate the in vivo potential for such systems to transport drugs to the brain. The aim of this research was to investigate the in vitro protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (DDI-NLCs), using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), in order to establish the potential for NLCs to deliver DDI to the brain. NLC formulations were manufactured using high-pressure homogenization using a lipid matrix consisting of a mixture of Precirol® ATO 5 and Transcutol® HP. The 2-D PAGE analysis revealed that NLCs in formulations stabilized using Solutol® HS 15 alone or with a ternary surfactant system consisting of Solutol® HS 15, Tween® 80, and Lutrol® F68, preferentially adsorbed proteins, such as Apo E. Particles stabilized with Tween® 80 and Lutrol® F68 did not adsorb Apo E in these studies, which could be related to the relatively large particle size and hence small surface area observed for these NLCs. These findings have revealed that DDI-loaded NLCs may have the potential to deliver DDI to the brain in vivo and, in addition, to Tween® 80, which has already been shown to have the ability to facilitate the targeting of colloidal drug delivery systems to the brain. Solutol® HS 15–stabilized nanoparticles may also achieve a similar purpose.

Acknowledgment

Practical assistance received from Ms. Corinna Schmidt (Freie Universität Berlin, Germany) is gratefully acknowledged.

Declaration of interest

The authors wish to gratefully acknowledge the Andrew Mellon Scholarship (to K.W.K.), the Deutscher Akademischer Austausch Dienst (DAAD) (to K.W.K and R.H.M.), and the Joint Research Committee of Rhodes University (to R.B.W.) for financial assistance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.