167
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Density gradient separation of carborane-containing liposome from low density lipoprotein and detection by inductively coupled plasma spectrometry

, , &
Pages 53-58 | Received 30 May 2013, Accepted 06 Aug 2013, Published online: 05 Sep 2013
 

Abstract

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used for analyzing the new cholesterol-based compounds (BCH, BCH-Da, BCH-Db and BCH-Dc) in liposomal formulations. Not only the boron compounds but also the phospholipid compositions of the liposome formulation were quantitatively analyzed. Reasonable limit of detection for boron (0.5 µg/ml) and phosphorous (0.09 µg/ml), respectively, was observed. ICP-MS was also utilized for analyzing BCH in a brain distribution study. The detection limit of boron analysis by ICP-MS is at least three orders of magnitude lower than of that of ICP-AES (1 ng B/ml). The method was linear in the range of 500-1 ng B/ml and the linearity correlation coefficient was 1. In addition, an ultracentrifugation method was developed to separate liposomes from low-density lipoprotein (LDL). Factors such as density gradient and size of liposomes were adjusted to optimize separation and it was observed that in conjunction to time, speed and density gradient, size of the liposome also had impact on the separation using centrifugation method. These findings show the importance of ICP-AES as an analytical method for the analysis of element-based compounds encapsulated in phospholipid vesicles.

Acknowledgements

The authors are grateful to Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA, USA for facilitating the equipments and laboratories used.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.