18
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Interaction of pH-Sensitive Liposomes With Blood Components

&
Pages 121-141 | Published online: 28 Sep 2008
 

Abstract

Avoidance of lysosomal degradation of drugs entrapped in liposomes has been one of the major efforts in liposome research. The achievement of high drug deliver}' efficiency using pH-sensitive liposomes over the pH-insensitive liposomes has greatly influenced our strategies in liposome drug delivery. The success of pH-sensitive liposomes in delivering compounds such as fluorescence dye, anti-cancer reagents, toxins and DNA to target cells with high efficiency in vitro shows a great potential to apply the same strategy to in vivo systems. Using human plasma as a simplified model for blood, we have systematically examined the interaction of pH-sensitive liposomes composed of dioleoylphosphatidyl-ethanolamine (DOPE) and oleic acid (OA) with plasma components. Our results show that the bilayer structure of liposomes in plasma depends on their sizes. Small liposomes (d<200nm) were stabilized by plasma components while the larger ones (d>600nm) were rapidly lysed upon the exposure to plasma. Such differences in their stability in plasma may derive from their differences in lipid packing which determines the surface pressure of the membrane. Using purified serum proteins, we found that albumin such as bovine serum albumin (BSA) lyse liposomes by extracting OA from the bilayer. However, BSA induced lysis could be blocked by lipoproteins including HDL, LDL and VLDL, but not by immunoglobulins. Further studies with purified components of HDL demonstrated that apoAl, not the lipids of the HDL, contains the stabilization activity. The extraction of OA from liposomes and the insertion of plasma components into the bilayer modified the bilayer properties such that plasma stabilized liposomes were no longer pH sensitive. Using dipalmitoylsuccinylglycerol (DPSG), a double-chain pH senser for DOPE liposomes, we could preserve 50% pH sensitivity after plasma treatment. The potential application of such liposomes and other essential properties of pH-sensitive liposomes for drug delivery in vivo are also discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.