237
Views
67
CrossRef citations to date
0
Altmetric
Research Article

pH-Sensitive Liposomes

&
Pages 361-395 | Published online: 28 Sep 2008
 

Abstract

pH sensitive liposomes are lipid compositions that can be destabilized when the external pH is changed; usually from a neutral or slightly alkaline pH to an acidic pH. They are designed to circumvent delivery of liposome contents to the lysosomes of cells following internalization of the vesicle via the endocytic pathway. In the majority of compositions, a lipid containing a pH titratable group is mixed with phosphatidylethanolamine containing unsaturated acyl chains in a molar ratio (pH sensitive component/PE) of 1/4 or greater. There are five major groups of phosphatidylethanolamine containing pH-senstive lipid compositions. These can be classified by their acid-titratable component: phospholipids, acylated amino acids, fatty acids, cholesterol derivatives and miscellaneous double chain amphiphiles. The biophysical mechanism of action involves a transition of the lipids from the lamellar phase to the hexagonal phase. In cell culture, pH sensitive vesicles can increase the delivery of fluorescent markers, proteins, cytotoxic compounds, RNA and DNA into the cytoplasm. The mechanism of delivery is suggested to involve the destabilization of the liposome in the endosome as the pH is reduced from 7.4 to 5.0 and subsequent destabilization of, or fusion with, the endosomal membrane; some of the liposome contents are introduced into the cytoplasm. In most cases, the extent of liposome contents delivery into the cytoplasm is less than 1% of the amount that becomes cell associated. However further studies, with more reliable assays to differentiate cytoplasmic from lysosomal delivery, are required to place an exact value on this efficiency. The efficiency of pH sensitive liposomes in vivo is limited by stability of certain of the liposome compositions in serum and targeting to the appropriate cell. Cholesterol hemisuccinate is a particularly attractive component for in vivo use since it stabilizes the liposome when in serum at pH 7.4. The use of pH sensitive liposomes in drug delivery should continue to expand due to the increasing number of macromolecular therapeutic agents with intracellular targets.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.