17
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Mechanisms of leakage

Pages 855-871 | Published online: 28 Sep 2008
 

Abstract

Two mechanisms of leakage from liposomes are discussed, (i) Cations such as Ca2+ induce graded release whose rate depends mainly on vesicle collisions and is associated in the case of several acidic phospholipids with fusion events. A certain degree of leakage also occurs in between collisions. Consequently, the leakage per fusion is reduced at larger lipid and Ca concentrations, (n) Certain peptides induce leakage by pore formation, which shows selectivity to the size of the entrapped molecules and occurs by an all or none mechanism; vesicles either leak or retain all of their contents. A model for final extents and kinetics of leakage due to pore forming peptides is described. This model assumes that pore forming peptides become incorporated into the vesicle bilayer and aggregate to form a pore. Recent developments in the model enable considerations of a reversible or irreversible surface aggregation of peptides. Results of final extents and kinetics of leakage induced by pore forming peptides can be well explained and predicted by this formalism. Studies demonstrate that Ca can play a dual role in affecting leakage. A case is presented where Ca + inhibits and can even arrest pore formation by a peptide, while promoting vesicle fusion. Conversely, formation of pore structures by a peptide can inhibit vesicle fusion.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.