173
Views
9
CrossRef citations to date
0
Altmetric
Original

Sparse codes of harmonic natural sounds and their modulatory interactions

&
Pages 253-267 | Received 17 Jul 2009, Accepted 28 Oct 2009, Published online: 17 Nov 2009
 

Abstract

Sparse coding and its related theories have been successful to explain various response properties of early stages of sensory information processing such as primary visual cortex and peripheral auditory system, which suggests that the emergence of such properties results from adaptation of the nerve system to natural stimuli. The present study continues this line of research in a higher stage of auditory processing, focusing on harmonic structures that are often found in behaviourally important natural sound like animal vocalization. It has been physiologically shown that monkey primary auditory cortices (A1) have neurons with response properties capturing such harmonic structures: their response and modulation peaks are often found at frequencies that are harmonically related to each other. We hypothesize that such relations emerge from sparse coding of harmonic natural sounds. Our simulation shows that similar harmonic relations emerge from frequency-domain sparse codes of harmonic sounds, namely, piano performance and human speech. Moreover, the modulatory behaviours can be explained by competitive interactions of model neurons that capture partially common harmonic structures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.