134
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Ionising irradiation-induced inhibition of differentiation of C3H10T1/2 cells to the osteoblastic lineage

, , , &
Pages 447-452 | Received 12 Oct 2010, Accepted 19 Nov 2010, Published online: 10 Jan 2011
 

Abstract

Purpose: Previous studies using mouse osteoblast derived MC3T3-E1 and mouse myoblast derived C2C12 cells have not completely explained the mechanisms responsible for osteoradionecrosis. Thus, the aim of this study was to advance the in vitro experimental approaches for investigations of osteoradionecrosis.

Materials and methods: The pluripotent stem cell line, mouse embryo derived C3H10T1/2, was treated with all-trans-retinoic acid after irradiation (1, 3 and 6 Gy), and cell growth, cell cycle distribution, apoptosis, and alkaline phosphatase (ALP) activity were assessed.

Results: We demonstrated that ionising radiation inhibited the growth and decreased ALP activity in C3H10T1/2 cells. The decrease in cell growth was not due to apoptosis but was due to cell cycle delay. The decrease in ALP activity persisted in cells that were induced to an osteoblastic lineage 24 h after irradiation.

Conclusions: Our results suggested that C3H10T1/2 cells are suitable for investigating the effects of ionising irradiation on osteoblast precursor cells.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.