199
Views
11
CrossRef citations to date
0
Altmetric
EFFECTS OF RADIOFREQUENCY RADIATION ON EGFR

A 1.8-GHz radiofrequency radiation induces EGF receptor clustering and phosphorylation in cultured human amniotic (FL) cells

, , , , &
Pages 239-244 | Received 01 Apr 2011, Accepted 20 Oct 2011, Published online: 18 Nov 2011
 

Abstract

Purpose: Many studies have shown that exposure to radiofrequency radiation (RFR) could activate cellular signal transduction pathways. In the present research, we investigated the effects of exposure to a 1.8-GHz RFR at different intensities on epidermal growth factor (EGF) receptor clustering and phosphorylation in human amniotic (FL) cells.

Materials and methods: Receptor clustering on cellular membrane surface was analyzed using immunofluorescence assessed by confocal microscopy, and phosphorylation of EGF receptors was measured by western blot technology. EGF treatment served as a positive control.

Results: The results showed that, compared with sham exposure, exposure to RFR at specific absorption rate (SAR) of 0.5, 1.0, 2.0, or 4.0 W/kg for 15 min significantly induced EGF receptor clustering and enhanced phosphorylation on the tyrosine-1173 residue in FL cells, whereas exposure to a SAR 0.1 W/kg radiation for 15 min did not cause a significant effect.

Conclusion: Based on the results of this experiment, we conclude that membrane receptors could be one of the main targets that RFR interacts with cells, and the dose-rate threshold, in the case of EGF receptors, is between SAR of 0.1 and 0.5 W/kg. The results indicate a sigmoid dependence of RFR effects on intensity.

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 30970671) and the Major State Basic Research Development Program of China (973 Program) (No. 2011CB503700). We thank Prof. Henry C. Lai of the University of Washington, Seattle, USA, for his comments on the manuscript.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.