376
Views
45
CrossRef citations to date
0
Altmetric
TRANSLATIONAL RESEARCH ACTION OF MELATONIN ON RADIATION-INDUCED LUNG INJURY

Melatonin reduces X-ray radiation-induced lung injury in mice by modulating oxidative stress and cytokine expression

, , , , , & show all
Pages 97-105 | Received 29 Mar 2012, Accepted 04 Sep 2012, Published online: 16 Oct 2012
 

Abstract

Purpose: The modification of radiation-induced lung injuries by melatonin was studied by measuring changes in oxidative stress, cytokine expression and histopathology in the lung tissue of mice following irradiation.

Materials and methods: The thoraces of C57BL/6 mice were exposed to a single X-ray radiation dose of 12 Gy with or without 200 mg/kg of melatonin pretreatment. The level and localization of transforming growth factor (TGF)-β1 protein were measured using an enzyme-linked immunosorbent assay (ELISA) method and immunohistochemical staining, respectively. Real-time quantitative polymerase chain reaction (PCR) was established to evaluate the relative mRNA expression levels of TGF-β1, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6.

Results: Malondialdehyde (MDA) levels increased after irradiation and then significantly reduced (1.9-fold) under melatonin treatment. Changes in superoxide dismutase (SOD) and catalase activities, as well as glutathione (GSH) levels, after irradiation were significantly reduced by melatonin, including a notable 5.4-fold difference in catalase activity. We observed increased expression of TGF-β1 and TNF-α after irradiation and a significant reduction in the elevation of their expression by melatonin treatment. Furthermore, irradiation-induced histopathologic alterations were obviously abated in the melatonin-pretreated mice.

Conclusions: The present results suggest that melatonin reduces radiation-induced lung injury via a significant reduction of oxidative stress and of the production of cytokines, such as TGF-β1 and TNF-α, the production of which increased following lung irradiation.

Declaration of interest The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.