784
Views
9
CrossRef citations to date
0
Altmetric
Thematic Issue: 52nd International Conference on the Bioscience of Lipids

Monounsaturated fatty acids are required for membrane translocation of protein kinase C-theta induced by lipid overload in skeletal muscle

, , , , &
Pages 309-320 | Received 29 Feb 2012, Accepted 01 May 2012, Published online: 13 Aug 2012
 

Abstract

Protein kinase C (PKC) activation induced by diacylglycerols (DAGs) is one of the sequels of the dysregulation of intramuscular lipid metabolism and is thought to play an important role in the development of insulin resistance (IR). We tested the hypothesis that DAGs with different acyl chains have different biological effects and that DAG species enriched in monounsaturated fatty acids (MUFA) act as better activators of PKC. The experiments were performed in vitro on C2C12 myotubes treated with palmitate (16:0), stearate (18:0) or oleate (18:1) and in vivo on the skeletal muscles of rats fed high-fat (HF), high-tristearin (TS) or high-triolein (TO) diets. To define the importance of endogenously synthesized MUFA on DAG-induced PKCθ activation, we performed experiments on stearoyl-CoA desaturase 1 knockout mice (SCD1-/-) as well. The results show that the content of total DAGs and the levels of saturated DAG species are significantly increased in both insulin-resistant (16:0, HF and TO) and highly insulin-sensitive (18:0 and TS) groups. An increase in MUFA-containing DAGs levels was most constantly related to increase in PKCθ membrane translocation and IR. In the muscles of MUFA-deficient SCD1-/- mice, the DAG content and the induction of PKCθ translocation by the HF diet were significantly reduced. Collectively, our data from both the cell and animal experiments show that DAGs composed of 16:1 and/or 18:1, rather than the levels of total or saturated DAGs, are related to PKCθ membrane translocation. Moreover, our results show that the availability of dietary MUFA and/or the activity of endogenous desaturases play an important role in muscle DAG accumulation.

Acknowledgements

This work was supported by Polish Ministry of Science and Higher Education grant no. N N301 0402 36 (to P.D.), EMBO Installation Grant no. 1643 (to A.D.) and Polish Science Foundation grant TEAM/2010-5/2 (to A.D.).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.