1,501
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Generating thermostabilized agonist-bound GPR40/FFAR1 using virus-like particles and a label-free binding assay

, , , &
Pages 168-175 | Received 02 Sep 2013, Accepted 30 Apr 2014, Published online: 28 Jul 2014
 

Abstract

Elucidating the detailed mechanism of activation of membrane protein receptors and their ligand binding is essential for structure-based drug design. Membrane protein crystal structure analysis successfully aids in understanding these fundamental molecular interactions. However, protein crystal structure analysis of the G-protein-coupled receptor (GPCR) remains challenging, even for the class of GPCRs which have been included in the majority of structure analysis reports among membrane proteins, due to the substantial instability of these receptors when extracted from lipid bilayer membranes. It is known that increased thermostability tends to decrease conformational flexibility, which contributes to the generation of diffraction quality crystals. However, this is still not straightforward, and significant effort is required to identify thermostabilized mutants that are optimal for crystallography. To address this issue, a versatile screening platform based on a label-free ligand binding assay combined with transient overexpression in virus-like particles was developed. This platform was used to generate thermostabilized GPR40 [also known as free fatty acid receptor 1 (FFAR1)] for fasiglifam (TAK-875). This demonstrated that the thermostabilized mutant GPR40 (L42A/F88A/G103A/Y202F) was successfully used for crystal structure analysis.

Acknowledgements

The authors are grateful to Drs G. Kefala, A. Srivastava, J. Yano, and F. Gruswitz for valuable discussions and careful proofreading of the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.