801
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Bacterial lipid modification of proteins requires appropriate secretory signals even for expression – Implications for biogenesis and protein engineering

, &
Pages 183-194 | Received 27 Jan 2014, Accepted 01 Jul 2014, Published online: 26 Aug 2014
 

Abstract

Sec- and Tat-mediated bacterial lipid modification of proteins are important posttranslational processes owing to their vital roles in cellular functions, membrane targeting and biotechnological applications like ELISA, biosensor, adjuvant-free vaccines, liposomal drug delivery etc. However a better understanding of the tight coupling of secretory and lipid modification machineries and the processes associated will help unravel this essential biological event and utilize it for engineering applications. Further, there is a need for a systematic and convincing investigation into membrane targeting, solubilization and ease-of-purification of engineered lipoproteins to facilitate scientists in readily applying this new protein engineering tool. Therefore, in this study, we have investigated systematically recombinant expression, translocation, solubilization and purification of three White Spot Syndrome Viral (WSSV) proteins, ICP11, VP28 and VP281. Our study shows that the lipid modification and secretion processes are tightly coupled to the extent that mismatch between folding kinetics and signal sequence of target proteins could lead to transcriptional-translational uncoupling or aborted translation. The proteins expressed as lipoproteins through Tat-pathway were targeted to the inner membrane achieving considerable enrichment. These His-tagged proteins were then purified to apparent homogeneity in detergent-free form using single-step Immobilized Metal Affinity Chromatography. This study has interesting findings in lipoprotein biogenesis enhancing the scope of this unique post-translational protein engineering tool for obtaining pure detergent-free, membrane or hydrophobic surface-associating diagnostic targets and vaccine candidates for WSSV.

Acknowledgements

We thank (the late) Dr V. Murugan, Centre for Biotechnology, Anna University for his initial contributions and we dedicate the work to his memory.

Supplementary Material Available Online

Supplementary Figures 1, 2 and 3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.