5
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Effect of Ca2+ on Structure and Fluidity of Microvillus Membranes of Human Placenta

, , , , , , & show all
Pages 193-206 | Published online: 09 Jul 2009
 

Abstract

This investigation shows the effect of a Ca2+ addition on the structural and physicochemical properties of microvillus plasma membranes obtained from human placenta. Ca2+ addition induces an increase in microviscosity, as shown by the increase of order parameter and rotational correlation time of 5-and 16-doxylsterate derivatives and by the increase of fluorescence polarization of diphenylhexatriene. All the effects were obtained in a wide temperature range. The morphometric analysis of the ultrastructural images shows that the vesicle profiles of syncytiotrophoblast membranes decrease both area and form factor (FF) in the presence of Ca2+ with respect to the controls. The freeze-fracture results also show that Ca2+ induces an enhanced tendency to IMP clusterization. The Ca2+-induced changes were observed in both E and P faces. Our results underline the important role of Ca2+ in the cell membrane structure per se and in modulating interactions between cytoplasmic and extracellular microenvironments. The results of morphometric analysis of the ultrastructural images agree with biochemical data showing an increased stability induced by calcium on plasma membranes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.