178
Views
41
CrossRef citations to date
0
Altmetric
Original Article

Glucose-6-phosphatase proteins of the endoplasmic reticulum (Review)

, &
Pages 217-227 | Received 22 Aug 1994, Published online: 09 Jul 2009
 

Summary

Hepatic glucose-6-phosphatase (G-6-Pase) catalyses the terminal step of hepatic glucose production and it plays a key role in the maintenance of blood glucose homeostasis. Hepatic G-6-Pase is an integral resident endoplasmic reticulum (ER) protein and it is part of a multicomponent system. Its active site is situated inside the lumen of the ER and transport proteins are needed to allow its substrates, glucose-6-phosphate (G-6-P) (and pyrophosphate), and its products, phosphate and glucose, to cross the ER membrane. In addition, a calcium-binding protein is also associated with the G-6-Pase enzyme. Recent immunological studies have shown that G-6-Pase (which has conventionally been thought to be present only in the gluconeogenic organs) is present in minor cell types in a variety of human tissues and that its distribution changes dramatically during human development. In all the tissues, enzymatic analysis, direct transport assays and/or immunological detection of the ER glucose and phosphate transport proteins have been used to demonstrate the presence and activity of the whole G-6-Pase system. The G-6-Pase protein is very hydrophobic and has proved difficult to purify to homogeneity. Four proteins of the system have now been isolated and polyclonal antibodies have been raised against them; two have also been cloned. The available sequences, together with topologicai studies, have given some information about both the topology of the proteins in the ER and the probable mechanisms by which the proteins are retained in the ER.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.