31
Views
51
CrossRef citations to date
0
Altmetric
Original Article

Role of glutamate-269 in the lactose permease of Escherichia coli

, , &
Pages 9-16 | Received 24 Jun 1993, Published online: 09 Jul 2009
 

Abstract

Glu-269, which is located on the hydrophilic face of putative helix VIII in the lactose permease of Escherichia coli, has been replaced with Asp, Gln or Cys by oligonucleotide-directed, site specific mutagenesis. Cells expressing Asp-269 permease exhibit no lactose accumulation or lactose-induced H+ translocation, but retain some ability to mediate lactose influx down a concentration gradient at high substrate concentrations. Furthermore, right-side-out membrane vesicles containing Asp-269 permease do not catalyse active lactose transport, facilitated lactose efflux or equilibrium exchange. Remarkably, however, Asp-269 permease accumulates β,d-galactopyranosyl 1-thio-β,d-galactopyranoside in a partially uncoupled fashion, whereas no transport of methyl-β,d-thiogalactopyranoside, sucrose or maltose is detectable. Mutant permeases containing neutral replacements (Gln or Cys) or Glu-269 are completely devoid of activity, although the proteins are present in the membrane at concentrations comparable with wild-type or Asp-269 permease. The observations demonstrate that a carboxylate at position 269 is essential for transport activity, and Glu-269 is important for substrate binding and/or recognition.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.