35
Views
25
CrossRef citations to date
0
Altmetric
Original Article

GABA uptake and release by a mammalian cell line stably expressing a cloned rat brain GABA transporter

, , &
Pages 23-30 | Received 03 Jun 1993, Published online: 09 Jul 2009
 

Abstract

In order to facilitate study of the neuronal GABA transporter and provide a convenient system for potential drug screening, we have established a CHO cell line, designated 1F9, which stably expresses the cloned GABA transporter from rat brain (GAT-1). 1F9 cells transport GABA at levels approximately 300-fold higher than untransfected CHO cells, and GABA transport in these cells has the following properties: (1) a dependence on sodium and chloride ions; (2) higher sensitivity to neuronal subtype uptake inhibitors (DABA and ACHC) than to glial subtype inhibitors (β-alanine and THPO); and (3) Km (2·5 μm) and i50 values for various competitive ligands that are comparable with values determined in synaptosomes and brain slices. Given the fidelity with which the 1F9 cell line expresses these characteristics of the native neuronal GABA transporter, we have used it to further address GABA transporter activity. [3H]GABA uptake by 1F9 cells is inhibited approximately 50% by the chloride transport blockers DIDS and SITS. The GABA receptor agonists muscimol and baclofen also inhibit GABA transport; however, the receptor antagonists bicuculline and phaclofen have no effect. 1F9 cells also show release of [3H]GABA release is calcium independent, and is differentially affected by changes in the ion gradient, as well as by the presence of external substrates and uptake blockers. These experiments indicate that 1F9 cells provide a convenient system for the screening of GABA transport inhibitors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.