18
Views
42
CrossRef citations to date
0
Altmetric
Original Article

Effects of domain structure on in-plane reactions and interactions

, , , &
Pages 157-162 | Published online: 09 Jul 2009
 

Abstract

The existence of an in-plane domain structure in biological membranes raises the question of the physiological function, if any, of this structure. One important function may be to enhance or limit the equilibrium poise and rates of in-plane reactions through control by the cell of the percolation properties of the domain system. At low average domain occupancy by reactants or interactants, which must be the case for most biological membrane components, moving the domain system from connection to disconnection has marked effects on the apparent equilibrium poise and the rates of membrane-confined reactions. This conclusion is based on computer modelling of the effects of disconnection/connection of nine types of bimolecular in-plane reactions. Using the phase structure and percolation properties of two-component, two-phase phospholipid bilayers, it is possible to examine experimentally homo- and heterodimeriztion reactions, and enzyme-catalysed reactions in-plane as well as the effects of a transmembrane peptide on these systems. These theoretical and experimental studies suggest that percolation effects may be physiologically important in biological membranes. Whether this is in fact the case remains to be demonstrated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.