215
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Amino acid sequences which promote and prevent the binding and membrane insertion of surface-active peptides: Comparison of melittin and promelittin

, &
Pages 221-227 | Received 03 Aug 1998, Published online: 09 Jul 2009
 

Abstract

The temporal sequence of molecular events involved in the interactions of a number of related peptides with membranes are revealed using two complementary fluorescence techniques. Comparative studies are reported of the interactions of melittin, promelittin and a melittin analogue with trp-19 replaced with lie and the n-terminal gly replaced with a trp residue, with phosphatidylcholine membranes. It is shown that the interaction of the n-terminal region of melittin rapidly binds and inserts into the body of the membrane with a rate constant of around 367 s-1. This is followed by a slightly slower membrane insertion of the trp-19 region with a rate constant of around 112 s-1. The positive charges of the melittin molecule then come into close proximity with the membrane with rate constants around 27 s-1. Finally, these charged regions insert into the hydrophobic core of the membrane with rate constants of about 0.3 s-1. The effect of incorporating net negative charge onto the membrane surface in the form of 15 mole % phosphatidylserine, augments by about threefold, the binding of the charged domains of the melittin molecule. The observations of the melittin interactions are compared with the melittin-precursor protein, promelittin. Sections of the promelittin molecule are also found to bind and insert into the body of the phospholipid membrane, although nearly 30 times less rapidly than melittin. No charged sections of promelittin are found to insert into the membrane.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.