123
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Recombinant Escherichia coli cells immobilized in Ca-alginate beads for metabolite production

, , , , &
Pages 348-359 | Received 25 Aug 2008, Published online: 07 Oct 2009
 

Abstract

Milligram amounts of metabolites of drug candidates are required to identify toxic products. Human drug metabolites are currently produced selectively in a time- and cost-efficient manner in bioreactor systems containing recombinant Escherichia coli co-expressing a human cytochrome P450 isoenzyme/NADPH cytochrome P450 reductase (hCYP/HR) complex. For further optimization, immobilization of the catalytic system in Ca-alginate microbeads was considered. This new concept was designed for CYP3A4 with testosterone as substrate. Immobilized E. coli cells had a high maximal and homogeneously distributed biomass. Viability was stable over at least 1 week of culture and even longer during storage. Gene expression was ideally initiated 6 h after immobilization. Although immobilized E. coli cells expressed a highly functional enzyme system after 2 days, they did not metabolize testosterone, probably due to cell permeability problems resulting from immobilization. Therefore, immobilized cell membranes displaying testosterone bioconversion activity, even after long-term storage, will be used in bioreactors with high organic solvent content.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.