145
Views
20
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Nitrile-metabolizing potential of Bacillus cereus strain FA12; Nitrilase production, purification, and characterization

, , &
Pages 156-166 | Received 03 Dec 2014, Accepted 11 Aug 2015, Published online: 05 Oct 2015
 

Abstract

Nitrile-hydrolyzing bacteria have the potential to perform useful biotransformations such as the production of industrially useful acids and amides. In this study, we report a nitrile-degrading bacterium with significant nitrile metabolism. Molecular characterization of 16S rDNA gene characterized this strain as Bacillus cereus. Medium optimization of B. cereus FA12 showed that biomass and nitrilase production was strongly supported by glucose (10 gL− 1) and yeast extract (10 gL− 1). Enzymatic production improved slightly in the pH range from 6.0 to 7.0. The addition of Mg+2, Fe+2, and Na+ supported biomass and nitrilase production; however, other metal ions, Co+2 and Cu+2, inhibited production. The apparent molecular mass of the purified FA12 nitrilase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was about 45 kDa. Nitrilase FA12 shows relatively high activity and stability at pH 7.0 and 40°C. Nitrilase FA12 was marginally inhibited with Ca+ 2 and Co+2, whereas inhibition in the presence of dithiothreitol or DTT was 80%. The pseudo Km (mM) values of resting cells (i.e., treating whole cells as if they were an enzyme) for acetonitrile and acetamide were determined to be 2.36 and 1.81, respectively. Under optimum situations, B. cereus FA12 resting cells produced 83 and 58 (U/mg) acetonitrile/acetamide degrading activity, respectively. Ammonia production from acetamide and acetonitrile by the B. cereus FA12 was maximum after 5 and 7 h of incubation, respectively. These results indicate that B. cereus FA12 resting cells may be used in nitrile biotransformations to produce commercially useful compounds.

Acknowledgement

The authors express their gratitude to the Research Council of the Shahid Bahonar University of Kerman for financial support during the course of this project.

Declaration of interest: The authors report no declarations of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.