33
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Differential Effects of the MDR1 (Multidrug Resistance) Gene-Activating Agents on Protein Kinase C: Evidence for Redundancy of Mechanisms of Acquired MDR in Leukemia Cells

, , &
Pages 191-195 | Received 28 Mar 2000, Published online: 01 Jul 2009
 

Abstract

Human leukemia cells may acquire MDR1/P-glycoprotein-mediated multidrug resistance (MDR) in the course of short-term (within hours) exposure to many stress stimuli. This effect is thought to be associated with the activity of protein kinase C (PKC) (Chaudhary, Roninson, 1992, 1993). However, we show here that cytosine β-D-arabinofuranoside (Ara C) and 12-O-tetradecanoylphorbol 13-acetate (TPA), agents that activated the MDR1 gene in the H9 T-cell leukemia line, caused different effects on PKC. Namely, TPA activated PKC whereas Ara C was without the effect. Furthermore, cell permeable ceramide, a lipid messenger known to mediate cellular effects of chemotherapeutic drugs and TPA, activated the MDR1 gene and down-regulated PKC. These results suggest that the MDR1 gene can be activated via the pathway(s) that requires PKC activity as well as via bypass of PKC. The redundancy of signaling pathways that regulate the acquisition of MDR should be taken into consideration for prevention of secondary drug resistance in hematological malignancies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.