315
Views
40
CrossRef citations to date
0
Altmetric
Original Articles: Research

Activation of the p38 Map kinase pathway is essential for the antileukemic effects of dasatinib

, , , , , , , , & show all
Pages 2017-2029 | Received 09 Apr 2009, Accepted 25 Jun 2009, Published online: 09 Dec 2009
 

Abstract

Dasatinib, a dual Src/Abl tyrosine kinase inhibitor, has significant antileukemic effects against various imatinib mesylate-resistant BCR/ABL mutants. Despite well-documented inhibitory effects of dasatinib on BCR/ABL kinase, the exact downstream cellular events leading to generation of its potent antileukemic effects remain to be defined. We provide evidence that p38 Map kinase (MAPK) pathway is activated leading to increased upregulation of mixed lineage kinase 3, MKK3/6, MSK1, and Mapkapk2, upon treatment of BCR/ABL expressing cells with dasatinib, including cells expressing various imatinib-resistant mutants, except for T315I. Our data demonstrate that such dasatinib-dependent activation of p38 MAPK and its effectors plays a critical role in the generation of antileukemic responses, since pharmacological inhibition of p38 or siRNA-mediated knockdown of its expression reverse dasatinib-mediated apoptosis, cell cycle arrest, and anti-proliferative effects. p38 MAPK inhibition also reversed dasatinib-induced suppression of CML patient-derived leukemic colony-forming units progenitor growth in vitro, as well as BCR/ABL expressing KT-1 cell-derived leukemic progenitor growth. Altogether, our findings suggest a critical role for p38 MAPK pathway in the generation of antileukemic effects of dasatinib, and raise the possibility that development of novel means to enhance p38 MAPK activation in BCR/ABL expressing cells may be an approach to promote antileukemic responses and, possibly, reverse T315I mutation-mediated resistance.

Acknowledgements

We are indebted to Shashi Parmar for her administrative services. This work was supported by VISN 17 Grant and a Merit Review grant from the Department of Veterans affairs, NIH grants CA121192, HL082946, HL067256 and HL61897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.