117
Views
13
CrossRef citations to date
0
Altmetric
Pages 43-50 | Published online: 01 Jul 2009
 

Abstract

Thymus, the main organ for T lymphopoiesis, requires a permanent influx of progenitors from bone marrow (BM) or fetal liver. An essential question relating to early T-cell development is the identification of the progenitor population which actually homes to the thymus. Recent findings have shown that human multipotent progenitor/stem cells expressing CD34 have the capacity to differentiate into T cells when introduced into a thymic environment. More mature CD34+ bone marrow cells coexpressing CD7 and having a poor myeloid differentiation capacity can also efficiently differentiate into T cells in vitro. These lymphoid committed precursors might be the true thymic repopulating cells. In the thymus, cells with a similar CD34+7+ phenotype include the most primitive thymocyte precursors. CD34+ thymocytes have no myeloid differentiation potential, but may include precursors for natural killer (NK) cells. Interleukin-7 (IL7) is a potent in vitro growth factor for CD34+ thymocytes. Whereas current data do not support a crucial role for IL2, patients with IL2 receptor y chain (IL2Ry) deficiency lack T- and NK cells. The recent demonstration that IL2Ry is part of the receptor for IL7 strongly suggests that this cytokine plays an essential role in in vivo T lymphocyte and NK development.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.