51
Views
11
CrossRef citations to date
0
Altmetric
Original Article

G-CSF in the Biology and Treatment of Acute Myeloid Leukemias

&
Pages 423-428 | Received 01 Oct 1994, Published online: 01 Jul 2009
 

Abstract

Granulocyte colony-stimulating factor (G-CSF) is an hemopoietic growth factor produced by fibroblasts, monocytes and endothelial cells. The role of G-CSF in the biology of acute myeloid leukemia (AML) has been investigated by several authors, who have demonstrated receptor mediated enhanced proliferation of AML blasts in vitro, in the presence of G-CSF. This effect is further increased by addition of other cytokines such as GM-CSF, IL3, IL4, Stem cell factor (SCF), while Tumor Necrosis Factor (TNF) and Transforming Growth Factor β1 (TGF β1) seem to exert an inhibitory activity. An autocrine production of G-CSF by AML cells, a paracrine production by accessory cells and a protective effect displayed by G-CSF against programmed cell death could partially contribute to explain the pathogenesis of AML. In vivo, G-CSF has been used after chemotherapy in AML, in order to improve hemopoietic recovery in patients at high risk of infection. Current studies are focusing on better definition of the role of G-CSF, as such or combined with other biological modifiers, in dose intensification and autologous bone marrow or peripheral blood stem cell transplantation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.