22
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Gene Transfer-Mediated Generation of Drug-Resistant Hemopoiesis

, , , , , , & show all
Pages 17-23 | Received 01 May 1995, Published online: 01 Jul 2009
 

Abstract

Autologous- or allogeneic-bone marrow transplantation are increasingly used to overcome the myelo-suppressive effects of high dose chemotherapy administered to cancer patients. Transfer of the multidrug resistance (MDR) gene in hemopoietic progenitors has been proposed as a tool to administer higher and possibly more curative doses of chemotherapy. Murine models have demonstrated that retrovirus-mediated MDR transfer in bone marrow cells can render animals resistant to myeloablative doses of Taxol, and in vitro studies have shown that MDR-transduced human CD34+ cells can generate drug-resistant multipotential hemopoietic progenitors such as long term culture-initiating cells. Given these results, phase I clinical trials are currently under way to evaluate feasibility and treatment-related toxicity of MDR gene transfer in cancer patients by means of safe retroviral vectors. Finally, Taxol treatment of MDR transduced mice and human CD34+ cells have indicated that MDR is a dominant selectable marker in vitro and in vivo, and vectors carrying both MDR and non selectable genes such as β-globin or glucocerebrosidase could be used in the next future for gene therapy of inherited disorders like thalassemia or Gaucher disease.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.