31
Views
17
CrossRef citations to date
0
Altmetric
Original Article

The Use of a Basic Dye (Azure a or Toluidme Blue) Plus a Cationic Surfactant for Selective Staining of RNA: a Technical and Mechanistic Study

, &
Pages 307-313 | Published online: 12 Jul 2009
 

Abstract

Selective purple staining of RNA-rich structures such as basophilic cytoplasms of exocrine pancreas and plasma cells, Nissl substance, and nucleoli was achieved by treating tissue sections as follows. Stain dewaxed sections for 1/2 hour in a dyebath containing 0.1% w/v azure A or toluidine blue and 1% cationic surfactant (Hyamine 2389, a 50% w/v aqueous solution of diisobutylphenoxyethoxyethyldimethylbenzylammonium chloride; or benzyldimethylammonium chloride, or cetylpyridinium bromide, or octyltrimethylammonium bromide) buffered to pH 7 with phosphate. Rinse in water, blot, air dry and mount in synthetic resin. Intense purple staining of RNA-rich regions occurred after fixation in neutral formalin or in Carnoy's or Gendre's fluids, though satisfactory results were also found after fixation in acetone or alcohol. Chromatin generally stained a very pale azure after all fixations, though occasionally nuclei were unstained (Gendre's or Zenker's fluids). Subjecting tissue sections to acid hydrolysis or to digestion by RNAase eliminated or reduced the purple staining, but left the azure staining of nuclei unaffected. Satisfactory staining of RNA-rich structures was not critically dependent on the precise concentrations of dye, surfactant or inorganic salts in the dye-bath, nor on pH, staining time or chemical nature of the surfactant. The staining patterns can be rationalized with a tissue model that considers both surface charge and permeability factors, since present in the dyebath are small dye cations and large cationic surfactant micelles. As micelles and dye will both quickly penetrate basophilic structures considered to be porous, such as chromatin, competition will then greatly reduce staining of such substrates. But the large micelles will only slowly penetrate regions considered to be more impermeable, such as basophilic cytoplasms, so consequently small fast moving dye ions may enter and stain without competition.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.