171
Views
60
CrossRef citations to date
0
Altmetric
Original Article

Affinity for the P-Glycoprotein Efflux Pump at the Blood-Brain Barrier May Explain the Lack of CNS Side-Effects of Modern Antihistamines

, , , &
Pages 223-228 | Received 08 Aug 2000, Accepted 23 Jan 2001, Published online: 08 Apr 2010
 

Abstract

First generation H1 receptor antagonists are often associated with adverse CNS effects such as sedation, whereas modem, second generation antihistamines are generally non-sedating. The difference in therapeutic profile is mainly due to the poor CNS penetration of the modern derivatives. Current explanations for the differential ability of classical and modern antihistamines to cross the blood-brain barrier (BBB), based on differences in lipophilicity or protein binding, are inadequate. We have tested the hypothesis that non-sedating antihistamines fail to enter the CNS due to recognition by the P-glycoprotein (Pgp) drug efflux pump expressed on the luminal surface of cerebral endothelial cells forming the BBB in vivo.

The ability of several sedating and non-sedating antihistamines to affect the uptake of the Pgp model substrate [3H]-colchicine was examined using the immortalised rat brain endothelial cell line, RBE4, an established in vitro model of the BBB expressing Pep. All second generation antihistamines tested, significantly increased net accumulation of [3H]-colchicine to a level similar to that caused by the Pgp inhibitor verapamil. By contrast, the first generation antihistamines showed no affinity for Pgp. The results indicate that differences in the ability of classical and modern antihistamines to interact with Pgp at the BBB may determine their CNS penetration and as a consequence the presence or absence of central side-effects.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.