88
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Structural Requirements for Cationic Lipid Mediated Phosphorothioate Oligonucleotides Delivery to Cells in Culture

, , , , , , & show all
Pages 149-162 | Received 03 Jan 1997, Accepted 18 Mar 1997, Published online: 26 Jun 2009
 

Abstract

A series of 2,3-dialkyloxypropyl quaternary ammonium lipids containing hydroxyalkyl chains on the quaternary amine were synthesized, formulated with dioleoylphosphatidylethanolamine (DOPE) and assayed for their ability to enhance the activity of an intercellular adhesion molecule 1 (ICAM-1) antisense oligonucleotide, ISIS 1570. Cationic liposomes prepared with hydroxyethyl, hydroxypropyl and hydroxybutyl substituted cationic lipid all enhanced the activity of the ICAM-1 antisense oligonucleotide. Cationic lipids containing hydroxypentyl quaternary amines only marginally enhanced the activity of ISIS 1570. Hydroxyethyl cationic lipids synthesized with dimyristyl (C14:0) and dioleyl (C18:1) alkyl chains were equally effective. Activity of cationic lipids containing saturated alkyl groups decreased as the chain length increased, i.e. the dimyristyl (C14:0) was more effective than dipalmityl (C16:0) lipid, which was more effective than distearyl (C18:0). The phase transition temperature of cationic lipids containing saturated aliphatic chains was 56°C for the distearyl lipid, 42°C for the dipalmityl lipid and 24°C for the dimyristyl lipid. Cationic lipids with dioleyl alkyl chains required DOPE for activity, with optimal activity occurring at 50 mole%. In contrast, a dimyristyl containing cationic lipid did not require DOPE to enhance the activity of ISIS 1570. Formulation with different phosphatidylethanolamine derivatives, revealed that optimal activity was obtained with DOPE. These studies demonstrate that several cationic lipid species enhance the activity of phosphorothioate antisense oligonucleotides and provide further information on the mechanism by which cationic lipids enhance the activity of phosphorothioate oligodeoxynucleotides.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.