68
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Improved Body Distribution of 14C-labelled AZT bound to Nanoparticles in Rats determined by Radioluminography

, &
Pages 171-179 | Received 27 Jan 1997, Accepted 18 Mar 1997, Published online: 26 Jun 2009
 

Abstract

The objective of the present study is to visualize differences in the body distribution between radiolabeled AZT bound to nanoparticles and a control solution. Polyhexylcyanoacrylate nanoparticles were manufactured by emulsion polymerization in the presence of AZT and an ionic emulsifier, bis(2-ethylhexyl) sulfosuccinate sodium. The AZT-control solution was equally prepared, but contained no monomer. The two preparations were administered either by i.v. injection or perorally by gavage. After determined time points the animals were sacrificed using carbon dioxide. The cadavers were shock-frozen in cellulose gel and cut into slices using a cryomicrotome. The tissue cross sections were fixed on an adhesive tape and then were freeze dried. The quantification of the radioactive AZT in the different organs and tissues was performed by radioluminography, and the images were generated on a computer. After i.v. injection of AZT-nanoparticles, a high amount of the AZT label was found in the organs belonging to the reticuloendothelial system. In these organs the radioactivity was inho-mogeneously distributed showing that the uptake of the particle-associated radioactivity depended on the type of the cells located in the organs and was consistent with uptake by macrophages. The highest radioactivities were found in the Gl-tract and in the liver. A difference in the elimination pathway between AZT-control solution and AZT bound to nanoparticles also was visible on the images. Similar results were obtained after oral administration. Of course, with the latter route a larger portion of AZT remained in the Gl-tract especially after administration of nanoparticle-bound drug. These results confirmed those obtained by a classically performed quantitative whole body distribution study using liquid scintillation. This demonstrates that radioluminography is a useful method to study the organ distribution of drugs bound to nanoparticles.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.