42
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Effect of Aspirin on Protein Binding and Tissue Disposition of Oligonucleotide Phosphorothioate in Rats

, , , , , , & show all
Pages 303-312 | Received 16 Jan 1997, Accepted 30 Apr 1997, Published online: 26 Jun 2009
 

Abstract

Pharmacokinetic studies of phosphorothioate oligodeoxynucleotides (PS-oligonucleotides) in animals show that following intravenous administration, PS-oligonucleotide clears out rapidly from the plasma and is distributed to majority of the organs. PS-oligonucleotides are bound to plasma proteins extensively. This study was aimed to determine the effect of aspirin, a commonly used drug, on pharmacokinetics of PS-oligonucleotides. In the present study, PS-oligonucleotide was administered to rats that had received aspirin by gavage. Pharmacokinetic study shows that if PS-oligonucleotide was administered following aspirin administration in rats, a) plasma pharmacokinetic parameters (t1/2α?, t1/2β, AUC, etc.) had lower values, b) tissue disposition was different, and c) rate and route of elimination was affected in animals compared to rats receiving PS-oligonucleotide alone. This finding suggests that pharmacokinetics of PS-oligonucleotides can be affected with certain class of drugs, which may have direct impact on biological activity and safety.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.