310
Views
39
CrossRef citations to date
0
Altmetric
Research Article

Design of a pectin-based microparticle formulation using zinc ions as the cross-linking agent and glutaraldehyde as the hardening agent for colonic-specific delivery of resveratrol: In vitro and in vivo evaluations

, &
Pages 446-457 | Received 07 May 2010, Accepted 11 Jun 2010, Published online: 05 Aug 2010
 

Abstract

The aim of this study was to develop a colon-specific microparticle formulation based on pectin. Resveratrol was used as a model drug due to its potential therapeutic efficacy on colitis and colon cancer. Microparticles were produced by cross-linking pectin molecules with zinc ions and with glutaraldehyde as hardening agent for pectins. Different microparticles were prepared by varying the formulation variables. Effect of these formulation variables were investigated on particle shape and size, moisture content and weight-loss during drying, encapsulation efficiency, swelling–erosion ratio, and drug release pattern of the formulated microparticles. Formulation conditions were optimized based on the in vitro drug release study. Morphology, Fourier transform infrared spectroscopy, stability, and in vivo pharmacokinetic study of the microparticles prepared at the optimized formulation conditions were performed. Microparticles were spherical with <1 mm diameter and encapsulation efficiencies of >94%. The glutaraldehyde-modified microparticles prepared at optimized formulation conditions revealed colon specific in vitro and in vivo drug release. Plasma appearance of drug was delayed for 4–5 h after their administration directly into stomach, but displayed comparable area under the curve to other controls in the experiment, indicating the potential of the developed formulation as a colon-specific drug delivery system.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.