439
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Attenuation of early liver fibrosis by pharmacological inhibition of smoothened receptor signaling

, , , , , & show all
Pages 770-782 | Received 09 Jul 2012, Accepted 07 Aug 2012, Published online: 20 Sep 2012
 

Abstract

Hedgehog (Hh) signaling is involved in the pathogenesis of liver fibrosis. It has been previously shown that Hh-inhibitor cyclopamine (CYA) can reduce liver fibrosis in rats. However, CYA is not stable in vivo, which limits its clinical application. This study compares the antifibrotic potential of two known Hh antagonists, vismodegib (GDC-0449, abbreviated to GDC) and CYA. GDC is a synthetic molecule presently in clinical cancer trials and has been reported to be safe and efficacious. These drugs attenuated early liver fibrosis in common bile duct ligated rats, improved liver function, and prevented hepatic stellate cell (HSC) activation, thereby suppressing epithelial to mesenchymal transition (EMT). While both CYA and GDC increased the number of proliferating cell nuclear antigen positive liver cells in vivo, only CYA increased Caspase-3 expression in HSCs in rat livers, suggesting that while GDC and CYA effectively attenuate early liver fibrosis, their hepatoprotective effects may be mediated through different modes of action. Thus, GDC has the potential to serve as a new therapeutic agent for treating early liver fibrosis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.