756
Views
39
CrossRef citations to date
0
Altmetric
Research Article

Glycolytic enzymes PGK1 and PKM2 as novel transcriptional targets of PPARγ in breast cancer pathophysiology

, , &
Pages 161-174 | Received 17 Aug 2012, Accepted 02 Oct 2012, Published online: 06 Nov 2012
 

Abstract

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor and plays important roles in breast cancer cell proliferation. The complexity of the underlying biochemical and molecular mechanisms of breast cancer and the involvement of PPARγ in breast cancer pathophysiology are unclear. In this study, we carried out prediction of the peroxisome proliferator response element (PPRE) motifs in 2332 genes reported to be involved in breast cancer in literature. A total of 178 genes were found to have PPRE (DR1/DR2) and/or PPAR-associated conserved motif (PACM) motifs. We further constructed protein-protein interaction network, disease gene network and gene ontology (GO) analyses to identify novel key genes for experimental validation. We identified two genes in the glycolytic pathway (phosphoglycerate kinase 1 (PGK1) and pyruvate kinase M2 (PKM2)) at the ATP production steps and experimentally validated their repression by PPARγ in two breast cancer cell lines MDA-MB-231 and MCF-7. Further analysis suggested that this repression leads to decrease in ATP levels and apoptosis. These investigations will help us in understanding the molecular mechanisms by which PPARγ regulates the cellular energy pathway and the use of its ligands in human breast cancer therapeutics.

Acknowledgements

We would like to thank Dr. Yutaka Ikeda and Dr. Toru Yoshitomi for helpful suggestions and assistance in carrying out the work.

Declaration of interest

The authors report no declaration of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.