174
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Single-walled carbon nanotubes mediated targeted tamoxifen delivery system using aspargine-glycine-arginine peptide

, , , , , , , , & show all
Pages 809-821 | Received 10 Apr 2013, Accepted 21 Jul 2013, Published online: 11 Sep 2013
 

Abstract

An aspargine-glycine-arginine (NGR) peptide modified single-walled carbon nanotubes (SWCNTs) system, developed by a simple non-covalent approach, could be loaded with the anticancer drug tamoxifen (TAM). This TAM-loaded NGR modified SWCNTs (TAM/NGR-SWCNTs) not only retained both optical properties of SWCNTs and cytotoxicity of TAM, but also could accumulate in tumors and enter into 4T1 cells, which facilitated combination chemotherapy with photothermal therapy in one targeting system. Enhanced cellular uptake, antitumor effect and cell apoptosis of TAM/NGR-SWCNTs on 4T1 cells were observed in vitro, compared with the TAM solution, TAM/SWCNTs and photothermal therapy alone. In vivo investigation of TAM/NGR-SWCNTs in tumor-bearing mice further confirmed that this system possessed much higher tumor targeting capacity and antitumor efficacy than the control, especially with the near-infrared-laser irradiation treatment. Moreover, it demonstrated negligible systematic toxicity through the histopathological analysis. All these results suggest TAM/NGR-SWCNTs are promising for high targeted efficiency and treatment efficacy and low side effects of future cancer therapy by synergistic effect of chemo-photothermal combination.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.