132
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Stapled endosome disrupting alginate particles for cytosolic delivery of cations

&
Pages 690-697 | Received 28 Feb 2015, Accepted 02 May 2015, Published online: 09 Oct 2015
 

Abstract

Divalent cations, the most prevalent minerals in the body, are responsible for a wide variety of cellular functions including signaling, proliferation, differentiation and cell death, and therefore their transmembrane transportation is tightly regulated. Despite the importance of divalent cations in cell activity, there are currently no intracellular delivery methods for divalent cations or modulation of intracellular levels of minerals. Here, we describe endosome disrupting alginate nanoparticles termed Alginoketals, which can deliver divalent cations to the cytosol of the cells. Alginoketals are generated by crosslinking alginic acid with endosome disrupting ketals, and using divalent cations as the stapling or binding agent. We show that Alginoketals were able to deliver copper (II) in the cytosol of the cancer cells thereby disrupting copper homeostasis and inducing cell death via accumulation of hydrogen peroxide. Alginoketal-copper (II)-based particles act as superoxide dismutase mimics and are the first class of divalent cation delivery vehicles, with potential application in cancer therapy, regenerative medicine and drug delivery.

Acknowledgements

The authors would like to thank Dr. Louis Falo, Department of Dermatalogy, University of Pittsburgh for providing the HEK293 and M05 cells used in this study.

Declaration of interest

The authors report no declarations of interest. This work was supported by the grants made to S.R.L. – Camillle and Henry Dreyfus Foundation for my Teacher-Scholar Award.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.