770
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Nanotechnology-enabled delivery of NQO1 bioactivatable drugs

, , , , &
Pages 672-680 | Received 22 May 2015, Accepted 13 Jul 2015, Published online: 09 Oct 2015
 

Abstract

Current cancer chemotherapy lacks specificity and is limited by undesirable toxic side-effects, as well as a high rate of recurrence. Nanotechnology has the potential to offer paradigm-shifting solutions to improve the outcome of cancer diagnosis and therapy. β-Lapachone (β-lap) is a novel anticancer agent whose mechanism of action is highly dependent on NAD(P)H:quinone oxidoreductase 1 (NQO1), a phase II detoxifying enzyme overexpressed in solid tumors from a variety of cancer types. However, the poor water solubility of β-lap limits its clinical potential. A series of drug formulations were developed for systemic administration in preclinical evaluations. Encapsulation of β-lap into polymeric micelles showed less side-effects and higher maximum tolerated dose (MTD), prolonged blood circulation time and preferential accumulation in tumors with greatly improved safety and antitumor efficacy. The prodrug strategy of β-lap further decreases the crystallization of β-lap by introducing esterase degradable side chains to the rigid fused ring structure. β-Lap prodrugs considerably increased the stability, drug-loading content and delivery efficiency of nanoparticles. The optimized formulation of β-lap-dC3 prodrug micelles showed excellent antitumor efficacy in treating orthotopic non-small cell lung tumors that overexpress NQO1, with target validation using pharmacodynamic endpoints.

Declaration of interest

The authors report no declarations of interest. This research was supported by NIH/NCI R01 CA102972 and CPRIT RP120897 to D.A.B. and J.G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.