Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 3, 1995 - Issue 1
3
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Modulation of Secretion of Interleukin-6 in Brain-Derived Microvascular Endothelial Cells

, &
Pages 31-37 | Received 22 Apr 1994, Published online: 13 Jul 2009
 

Abstract

Vascular permeability is tightly controlled, in particular in the cerebral microvasculature, thus factors able to modulate permeability are of physiological importance. Interleukin-6 (IL-6) can be released by many cell types including mononuclear phagocytes, fibroblasts and endothelial cells of various origins, and is involved in a variety of cellular responses, including modulation of vascular permeability. IL-6 is synthesized as a precursor propeptide which is proteolytically processed to the active hormone, then degraded, by as yet unknown enzymatic pathways. Unstimulated brain-derived microvessels, primary cells and cell lines, all secreted bioactive IL-6. Cell lines secreted IL-6 exclusively as a 25 kD peptide. In order to understand mechanisms regulating the secretion of IL-6 in cerebral endothelium, levels of IL-6 were measured in cell culture supernatants of brain-derived endothelial cells exposed to dexamethasone, forskolin or dibutyryl cAMP and inhibitors of serine-proteases. In primary cells and in cell lines, dexamethasone and benzamidine (a non-covalent serine-protease inhibitor) significantly and time-dependently decreased, and forskolin, dibutyryl cAMP and 4-(2-aminoethyl)benzene-sulfonyl fluoride (a covalent serine-protease inhibitor) significantly and in a time-dependent fashion increased IL-6 levels in cell culture supernatants. These results demonstrate that IL-6 biological activity is regulated at several steps in cerebral endothelium.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.