117
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Tempol blunts afferent arteriolar remodeling in chronic nitric oxide-deficient hypertension without normalizing blood pressure

, , , , &
Pages 132-139 | Received 27 Dec 2012, Accepted 19 Feb 2013, Published online: 20 Jun 2013
 

Abstract

Background/Aim: Renal preglomerular vessels play a central role in modulating renal function and injury, especially during conditions of renal hemodynamic stress such as hypertension. We evaluated whether improving the balance between nitric oxide (NO) and oxidative stress improves the morphological alterations of renal afferent arterioles that occur in NO deficiency-induced hypertension.

Methods: We measured indices of NO and oxidative stress and evaluated renal morphology and afferent arteriolar remodeling in rats treated with vehicle, L-NAME or L-NAME plus tempol (a superoxide dismutase mimetic) for 6 weeks.

Results: L-NAME-treated rats had hypertension, lower urinary and renal NO indices, higher renal cortical levels of TBARS, GSSG and GSSG/GSH. This was associated with significant eutrophic inward remodeling of the afferent arterioles; they had a marked decrease in arteriolar lumen area and a striking increase in arteriolar wall thickness and media to lumen ratio. Tempol did not significantly reduce blood pressure, but increased NO levels, decreased oxidative stress and partially blunted L-NAME-induced remodeling of afferent arterioles.

Conclusion: L-NAME-induced remodeling of afferent arterioles is blunted by tempol. This beneficial effect on remodeling is associated with increases in NO indices, decreases in oxidative stress, without significant decreases in blood pressure. Thus, the balance between these components may contribute to the altered renal hemodynamics and function in this model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.