532
Views
87
CrossRef citations to date
0
Altmetric
Review Article

Protein oxidative modifications in the ageing brain: Consequence for the onset of neurodegenerative disease

, , &
Pages 73-88 | Received 13 Jun 2010, Published online: 06 Sep 2010
 

Abstract

The free radical theory of ageing proposes the accumulation of altered, less active and toxic molecules of DNA, RNA, proteins and lipids caused by reactive oxygen species and reactive nitrogen species. Neurodegenerative disorders are characterized by an abnormal accumulation of oxidatively damaged macromolecules inside cells and in the extracellular space. Proteins involved in the formation of aggregates are β-amyloid, tau, α-synuclein, parkin, prion proteins and proteins containing polyglutamine. These abnormal aggregated proteins influence normal cellular metabolism. Additionally, deposition of abnormal proteins induces oxidative stress and proteasomal as well as mitochondrial dysfunction that ultimately lead to neuronal cell death. This review focuses on the impact of oxidative and nitrative stress in the ageing brain and, consequently, on the generation of modified proteins, as these post-translational modifications are assumed to play an important role in the development of neurodegenerative diseases.

This paper was first published online on Early Online on 27 August 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.