1,039
Views
134
CrossRef citations to date
0
Altmetric
Research Article

EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines

, , &
Pages 417-430 | Received 02 Jul 2010, Published online: 03 Dec 2010
 

Abstract

Superoxide (O2•−) has been implicated in the pathogenesis of many human diseases, but detection of the O2•− radicals in biological systems is limited due to inefficiency of O2•− spin trapping and lack of site-specific information. This work studied production of extracellular, intracellular and mitochondrial O2•− in neutrophils, cultured endothelial cells and isolated mitochondria using a new set of cationic, anionic and neutral hydroxylamine spin probes with various lipophilicity and cell permeability. Cyclic hydroxylamines rapidly react with O2•−, producing stable nitroxides and allowing site-specific O2•− detection in intracellular, extracellular and mitochondrial compartments. Negatively charged 1-hydroxy-4-phosphono-oxy-2,2,6,6-tetramethylpiperidine (PP-H) and positively charged 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium (CAT1-H) detected only extramitochondrial O2•−. Inhibition of EPR signal by SOD2 over-expression showed that mitochondria targeted mitoTEMPO-H detected intramitochondrial O2•− both in isolated mitochondria and intact cells. Both 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CP-H) and 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CM-H) detected an increase in cytoplasm O2•− stimulated by PMA, but only CM-H and mitoTEMPO-H showed an increase in rotenone-induced mitochondrial O2•−. These data show that a new set of hydroxylamine spin probes provide unique information about site-specific production of the O2•− radical in extracellular or intracellular compartments, cytoplasm or mitochondria.

This paper was first published online on Early Online on 9 December 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.